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ABSTRACT

This study focuses on understanding the evolution of Hurricane Earl (2010) with respect to random per-

turbations in the storm’s initial strength, size, and asymmetry in wind distribution. We rely on the Unified

Wave Interface-CoupledModel (UWIN-CM), a fully coupled atmosphere–wave–ocean system to generate a

storm realization ensemble, and use polynomial chaos (PC) expansions to build surrogate models for time

evolution of both the maximum wind speed and minimum sea level pressure in Earl. The resulting PC sur-

rogate models provide statistical insights on probability distributions of model responses throughout the

simulation time span. Statistical analysis of rapid intensification (RI) suggests that initial perturbations having

intensified and counterclockwise-rotated winds are more likely to undergo RI. In addition, for the range of

initial conditions considered RI seems mostly sensitive to azimuthally averaged maximum wind speed and

asymmetry orientation, rather than storm size and asymmetry magnitude; this is consistent with global sen-

sitivity analysis of PC surrogate models. Finally, we combine initial condition perturbations with a stochastic

kinetic energy backscatter scheme (SKEBS) forcing in the UWIN-CM simulations and conclude that the

storm tracks are substantially influenced by the SKEBS forcing perturbations, whereas the perturbations in

initial conditions alone had only limited impact on the storm-track forecast.

1. Introduction

Tropical cyclones (TCs) produce extreme wind, rain,

large ocean waves, storm surges, and flooding, which

result in significant impact on coastal areas (Stone et al.

1997). It is critical, both scientifically and economically

(Letson et al. 2007), to better understand dynamics and

improve TC forecasts. This study focuses on the impacts

of initial condition uncertainties on the storm track and

the characteristics of the maximum wind speed (MWS),

minimum sea level pressure (MSLP), and likelihood of

rapid intensification (RI). The study also attempts to

quantify the impacts of stochastic forcing on the storm

track, MWS, and MSLP in the absence of, or in combi-

nation with initial condition uncertainties.

Numerous studies and efforts have been devoted to

improving our current knowledge of TC dynamics, via

examining various ocean and atmosphere states in TC

events, including ocean surface waves (Walsh et al. 2002;

Chen et al. 2013; Chen and Curcic 2016; Curcic et al.

2016), sea surface temperature (Anthes andChang 1978;

Dickey et al. 1998; Latif et al. 2007; Lee and Chen 2014),

rain (Senn and Hiser 1959; Rosenfeld et al. 2007), and
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storm surge (Hsu et al. 1997; Hsu 2013). Some re-

searchers use surface wave forecast to estimate storm

impact (Alves et al. 2015). Others have conducted

hindcast studies with coupled hydrodynamics and wave

models on Hurricane Floyd (1999) (Funakoshi et al.

2008) and Hurricane Ike (2008) (Hope et al. 2013) and

suggested significant impact of wind-induced waves on

storm tides. Donelan et al. (2012) developed a surface

wave model that showed plausible prediction results for

both Hurricane Bonnie (1998) and Hurricane Ike (2008).

Advanced fully coupled atmosphere–wave–ocean model-

ing of Hurricane Ivan (2004) (Smith et al. 2013) and

Hurricane Frances (2004) (Chen et al. 2007, 2013) sug-

gested significant influence of wind–wave coupling

and ocean–wave currents coupling on the atmosphere–

ocean interaction and hurricane response in the two

cases, respectively.

Nevertheless, the predictability of TCs and under-

standing their response to uncertain inputs and forcing

remain a major challenge. The sources of these un-

certainties can be broadly categorized as structural un-

certainties caused by the abstraction of unknown physical

laws into the mathematical equations governing the

evolution of atmospheric flows; uncertainties in the

forecast model input data (such as imperfectly specify-

ing initial conditions, boundary conditions, empirical

constants in parameterizations), and uncertainties caused

by model errors such as those caused by discretization,

numerical errors, missing and/ormisparameterized subgrid-

scale processes (e.g., turbulent mixing and scale-dependent

convective parameterizations). Additional error sources

arise when observational data are assimilated into a

forecast. These observation errors have two compo-

nents: the measurement (or instrument) error and the

representation error (the discrepancy between the mod-

eled and observed fields); the representation error can

further be decomposed into components resulting from

unresolved scales and processes, forward model or

observation-operator errors and preprocessing or quality-

control errors (Janjić et al. 2018). The present article

focuses primarily on quantifying uncertainties on a subset

of the model input data, namely the ones relevant to the

storm initial configuration, using a response-surface

paradigm, and secondarily on model error using a sto-

chastic forcing paradigm; additionally, observational

errors will be relevant in the context of comparing en-

semble data to observational data.

Initial TC characteristics such as vortex intensity, size,

and asymmetry are examples of uncertain model inputs,

which are often poorly observed and poorly resolved in

standard weather forecasts; numerous data assimilation

and vortex specification techniques have been proposed

and evaluated for their representation (e.g., Hendricks

et al. 2013; Davidson et al. 2014; Zou et al. 2015; Singh

et al. 2016). Efforts have also been made to understand

the stochastic impacts of uncertainties stemming from

the distribution of atmosphere moisture and mesoscale

convective system on TC forecasts (Zhang and Sippel

2009; Sippel and Zhang 2010). Subsequently, the intrinsic

predictability of TCwindswas examinedby using idealized

simulations of a TC in statistical equilibrium (Brown and

Hakim 2013; Hakim 2013). More recently, predictability

studies of TC intensity using stochastic kinetic energy

backscatter scheme (SKEBS) perturbations were con-

ducted, focusing on 1) the impact of stochastic pertur-

bations at different scales, as well as perturbations in

lateral boundary condition on TC intensity predictability

(Judt et al. 2016a) and 2) the predictability of RI of a TC

(Judt and Chen 2016). However, most predictability

studies introduce model uncertainties via nonparametric,

global or regional, stochastic perturbations. Whereas

stochastic forcing may readily provide information re-

garding predictability, namely based on the spread of

TC simulation ensembles, the insight thus obtained may

be limited, because of difficulties in decomposing un-

certain inputs into interpretable components and/or the

lack of functional relationship between stochastic inputs

and model outputs.

To mitigate the difficulty in associating model re-

sponses with individual uncertainty sources, we propose

in this study a new parametric design in specifying the

storm’s uncertain initial conditions, which enables us to

examine the impact of each individual characteristic of

the initial storm on the storm evolution. Specifically, this

study quantifies the response of Hurricane Earl (2010)

forecasts to uncertainties in storm’s initial strength, size,

and asymmetry, while allowing the ambient environ-

ment (e.g., atmosphere outside the storm, ocean and

surface wave fields) to freely evolve in response to the

initial vortex perturbations. To this end, we use the fully

coupled atmosphere–wave–ocean model, namely the

Unified Wave Interface-Coupled Model (UWIN-CM)

framework (Chen et al. 2013; Chen and Curcic 2016;

Curcic et al. 2016), to simulate Earl’s evolution from

27August to 3 September 2010. The perturbations in the

initial vortex are thus allowed to propagate to surface

waves, subsurface currents, ocean temperature, and sa-

linity. The propagation of the initial storm uncertainties

over this 7-day period (discussed in section 2) is per-

formed via an ensemble of UWIN-CM simulations that

sample the uncertain input space. This ensemble is then

used to build polynomial chaos-based surrogates of

different model responses, namely the time evolutions

of MWS andMSLP. [For an overview of the application

of PCmethods to circulationmodels, see e.g., Alexanderian

et al. (2012), Mattern et al. (2012), Thacker et al. (2012),
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Winokur et al. (2013), Sraj et al. (2013, 2014), Iskandarani

et al. (2016a,b), and Siripatana et al. (2017).] These surro-

gates are then exploited to estimate hurricane statistics

and to quantify the relative impact of individual inputs

on model outputs as well as their joint sensitivities.

Furthermore, the dependence of RI on the uncertain

inputs is analyzed.

The choice of Hurricane Earl (2010) as a case study is

motivated by the following considerations. First, Earl was

a long-lived Atlantic hurricane that went through RI

and reached category 4 intensity on the Saffir–Simpson

hurricane wind scale (Cangialosi 2011). Earl had no di-

rect interaction with land like many other TCs did,

making the analysis and interpretation of the control

and perturbation realizations more straightforward.

Second, Earl has been thoroughly examined in past lit-

erature, from perspectives of dropsonde (Montgomery

et al. 2014), lightning (Stevenson et al. 2014), and

Doppler radar (Rogers et al. 2015) observations, nu-

merical modeling (Smith et al. 2017), to predictability

(Judt et al. 2016a; Judt and Chen 2016). These past

studies make Hurricane Earl an excellent case to test

new methodologies for uncertainty quantification, and

help put our results into context of what is already

known about it.

The high-resolution UWIN-CM framework dynami-

cally couples the atmosphere, wave, and ocean circula-

tion models, leading to computationally demanding

model runs that have both large CPU and disk storage

requirements. As a result, only a limited number of

UWIN-CM 7-day forecasts of a hurricane can be affor-

ded. Nonetheless, in light of recent experiences of Li

et al. (2016), we opted for the coupled system capabil-

ities provided by the UWIN-CM, instead of a cheaper

atmosphere-only simulation system. Specifically, Li

et al. (2016) observed that when perturbing wind forcing

and initial conditions independently, the ocean model

can in some situations fail or lead to unrealistic response.

Thus, our present reliance on a coupled model is also

motivated by our desire to gain experiences with a

framework that offers the capability of linking and/or

correlating multiple sources of uncertainty.

This paper is organized as follows. Section 2 outlines

the setup of the UWIN-CM framework employed in this

study, including the parameterization of initial storm

uncertainties. Section 3 presents the analysis of the re-

sponse of Hurricane Earl (2010) to perturbations in the

initial storm field. In section 3a we briefly introduce and

apply a polynomial chaos (PC) methodology to build

functional representations, or surrogates, of the quan-

tities of interest (QoIs) in terms of the random inputs.

The surrogates are analyzed in section 3b to assess their

suitability. They are then exploited in section 3c to

quantify the dependence of the MWS and MSLP on the

random inputs, and in section 3d to investigate the be-

havior of RI. Section 4 explores the possibility of com-

bining initial condition uncertainty with the global

SKEBS forcing perturbations, and compares the results

with those obtained by considering uncertain initial

conditions only. Section 5 summarizes the conclusions

from this study.

2. Coupled model and initial condition

perturbations

The forecast system used in this study is the UWIN-

CM. It couples the atmospheric [Weather Research and

Forecasting (WRF) Model], wave [the Unified Miami

Wave Model (UMWM)], and ocean [Hybrid Coordinate

OceanModel (HYCOM)] models in a single framework

that can simulate the physical interactions and exchanges

between the three components. Themodel description can

be found in appendix A, which largely follows from

Chen and Curcic (2016), with modifications to reflect

changes in the configuration used in the present study.

The remainder of this section reviews the settings of the

control simulations and presents the perturbations im-

posed on the initial storm conditions.

In this study, WRF is configured with a parent domain

at a 12-km horizontal grid resolution, and two storm-

following nests at 4- and 1.3-km horizontal grid resolution.

The two inner nests are configured to follow Hurricane

Earl as it propagates across the parent domain. The

HYCOM domain covers the region of the WRF outer

domain. It is configured with 0.048 horizontal grid spacing

(varying from ’3:8 to 4.4 km from north to south of the

model domain) and 32 vertical levels. The wave model

has the same domain as the WRF parent domain and is

defined on a 4-km horizontal resolution grid. The wave

energy spectrum is represented by 36 directional bins

and 37 frequency bins that range from 0.0313 to 2Hz

on a logarithmic scale.

a. Initial and lateral boundary conditions

The WRF Model initial and lateral boundary condi-

tions for the control run are from the National Centers

for Environmental Prediction (NCEP) Global Forecast

System (GFS) at 0.58 horizontal resolution, initialized at

0000 UTC 27 August 2010. The WRF lateral boundary

conditions are updated 6 hourly. The initial and boundary

conditions for the oceanmodel are provided by the global,

data assimilated, 0.088 horizontal resolution dailyHYCOM

analysis fields (downloaded from http://hycom.org).

The wave model is initialized from a calm state, and is

forced entirely through the interactive coupling with

the atmosphere and ocean circulation models.
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b. Initial condition perturbations

Figure 1 (top panel) shows the sea surface wind field

of the entire simulation domain at t5 0 (0000 UTC

27 August 2010) from the UWIN-CM forecast, which

will be used as a ‘‘control run’’ in this study. Hurricane

Earl (2010) started to evolve within the 450-km radius

marked by the black circle. We parameterize only the

wind field within the 450-km range (i.e., the wind field

inside the black circle) and design random perturbations

accordingly. Four characteristics of the storm are con-

sidered uncertain—the azimuthally averaged maximum

wind speed, radius of maximum wind, and magnitude

and azimuth of asymmetry—as further described below.

Let w(r, b) be the initial wind field within the 450-km

storm boundary (as shown in Fig. 1). By conducting an

azimuthal fit, we can decompose the wind field as

follows:

w(r,b)5A
0
(r)1A

1
(r) cos[b2b

1
(r)]

1Res(r,b), 0# r# 450 km, (1)

where A0(r) and A1(r) are wind amplitudes of wave-

numbers 0 and 1, respectively. The term b1(r) is the azi-

muth of the wavenumber-1 asymmetry, and Res(r, b)

denotes the residual wind field. The wind field is perturbed

via the four canonical random variables in Table 1. The

wavenumber 0 and 1 amplitudes are defined as

Amax
0,1 5 max

r#300km
A

0,1
(r) (2)

and the radius of maximum wind (RMW) is given by

RMW5 argmax
r#300km

A
0
(r) . (3)

Note that we limit the RMW to 300km in order to allow

smooth flow field transition across the 450-km storm

boundary. Figure 2 shows examples of initial fields re-

sulting from univariate parameter perturbations.

By perturbing these parameters, we aim to capture the

initial uncertainty in TC intensity, vortex size, as well as

the magnitude and azimuth of vortex asymmetry. All

four of these vortex characteristics are often either

poorly sampled because of scarce observations over the

open ocean, or undersampled by coarse-resolution global

models (e.g., Davidson et al. 2014; Singh et al. 2016)

which are used to initialize regional or hurricane-following

models such as UWIN-CM.

We choose the perturbation range of 620% for A0,

A1, and RMW based on the uncertainty estimates of the

best track data by Landsea and Franklin (2013). They

found that the intensity estimates range from about 25%

in tropical storms to 10% in major hurricanes, in the

absence of aircraft reconnaissance data. When both

satellite and aircraft data are available, these uncer-

tainties drop to about 15% and 8% in tropical storms

andmajor hurricanes, respectively. The choice of620%

for A0 and A1 is thus in the range of reported uncer-

tainty estimates. Whereas the uncertainty estimates by

Landsea and Franklin (2013) are notably higher for the

storm size, from about 35% in tropical storms to about

20% in major hurricanes, we limit our perturbation

range for RMW to 620% because too large of a per-

turbation in storm size made it challenging to produce

balanced fields with the storm’s environment. All con-

clusions from this work are thus conditional on the a

priori assumptions made about the uncertainty of the

selected parameters.

Finally, the motivation for perturbing the vortex asym-

metry azimuth comes from wavenumber-1 asymmetry

already being embedded in the control simulation, and

perturbing only the asymmetry magnitude would not

sample the full uncertainty space. For an example, see

Xie et al. (2011) who similarly perturbed the vortex

asymmetry in an application to storm surge impacts.

FIG. 1. (top) Sea surface wind field of the entire simulation do-

main from the control run. Perturbation is applied to the initial

wind field within the black circle (radius 5 450 km). (bottom)

Zoom-in plot of the target perturbation area.
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More details on perturbation formulation are given in

appendix B.

c. Stochastic forcing

The investigation of the combined effects of input

data uncertainties and stochastic forcing required a

separate set of UWIN-CM forecast experiments. These

experiments relied on the SKEBS approach to perturb

the wind and temperature fields over the entire atmo-

spheric model domain throughout the hurricane fore-

cast. The SKEBS configuration used herein is the same

as that described in Judt et al. (2016a) and Judt and

Chen (2016). Section 4 compares the response of Hur-

ricane Earl to uncertain initial conditions with and

without stochastic forcing.

3. Parametric analysis

Given the parameterization of initial state of Hurri-

cane Earl (2010) discussed in the previous section, an

Nrlz 5 80 member ensemble of UWIN-CM simulations

is generated via the Latin hypercube sampling (LHS)

design (McKay et al. 1979) in the four-dimensional pa-

rameter space J5 [21, 1]4 (we denote this ensemble as

P
80
LHS hereafter). For our problem, LHS amounts to

partitioning the distributions of each of the (independent)

input random variables into intervals of equal probability,

and randomly drawing a sample from each interval. A

permutation of the individual coordinates is then se-

lected, in such a way that there is no correlation between

the inputs. This results in an ensemble of Nrlz four-

dimensional input vectors, for which UWIN-CM simu-

lations are performed. We choose the maximum 10-m

wind speed and MSLP as our primary QoIs. Figures 3

and 4 show model realizations of these QoIs and storm

tracks on the sample set P 80
LHS, respectively, along with

the best estimates of each QoI.

The observed data are provided by the HURDAT2

hurricane database (Landsea and Franklin 2013), produced

by the National Hurricane Center (NHC). HURDAT2,

commonly knownas best track data, is the de facto standard

dataset used for baseline verification of most TC simu-

lations in both research and forecasting. Best track data

provide estimates of storm center position, MSLP and

MWS intensity, and size, every 6 h. They are derived

from satellite and aircraft reconnaissance data, when

available. Landsea and Franklin (2013) give a detailed

account of uncertainty estimates for each parameter in the

best track dataset, and these have guided the perturba-

tion range (620%) in our study. Finally, we note the

difference in the sampling between best track data and

the model fields. Whereas the best track data are based

on sparse observations and reported at 6-hourly in-

tervals, the model QoIs are derived from instantaneous

fields with full coverage, and output at hourly intervals.

Uhlhorn and Nolan (2012) and Nolan et al. (2013) pro-

vide detailed uncertainty estimates due to sampling of

NHC observations and modeled QoIs.

The realization ensemble of MWS captures the in-

tensity evolution pattern, with a wide envelope enclos-

ing the best estimate by NHC, despite the fact that high

and low biases occur at different times. On the other

hand, the MSLP ensemble clearly exhibits a high bias in

most simulations, and misses the low pressure minimum

beyond 31 August when compared with the NHC best

estimate. The reintensification of Earl on 2 September is

captured to an extent by the simulations in terms of

MWS, but not in terms of MSLP. This has an important

consequence for the PC analysis, the variability of which

is limited by the variability of the coupledmodel ensemble.

Since the control and the coupled model ensemble do not

capture the reintensification on 2 September well, the

PC analysis is also less representative of the observed

storm at that time. Finally, the simulated storm tracks

in Fig. 4 show close agreement (slight eastward bias)

with the NHC best estimated track, which is an im-

provement over the current state of the art (Judt et al.

2016a; Smith et al. 2017). The aforementioned storm

perturbation mechanism has a relatively small impact

on the storm track compared to the SKEBS experi-

ments of Judt and Chen (2016) (see discussion in

section 4).

a. PC framework

The PC approaches have rapidly developed in the past

years (Ghanem and Spanos 1991; Le Mâıtre et al. 2001,

Le Mâıtre et al. 2002; Xiu and Karniadakis 2002;

Winokur et al. 2013; Conrad and Marzouk 2013; Mycek

et al. 2017) and are being widely used for the purpose of

uncertainty quantification in ocean general circulation

TABLE 1. Uncertain parameters (percentage is relative to the corresponding unperturbed values given by the control run).

Parameters Perturbation range Interpretation PC parameters

Amax
0 [220%, 1 20%] Storm strength/intensity j1 2 [21, 1]

Amax
1 [220%, 1 20%] Asymmetry strength/intensity j2 2 [21, 1]

RMW [220%, 1 20%] Radius of max wind j3 2 [21, 1]

u [2908, 1 908] Storm rotation j4 2 [21, 1]
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modeling (OGCM) (Alexanderian et al. 2012; Thacker

et al. 2012; Iskandarani et al. 2016a; Li et al. 2016;

Sraj et al. 2016; Sraj et al. 2013). This subsection

provides a brief outline of the PC framework used

in the present study.

Let j5 (j1, j2, . . . , j4)
T be the four-dimensional ran-

dom vector, whose components are independent ran-

dom variables uniformly distributed over [21, 1]. These

canonical random variables parameterize the uncer-

tainty in the initial storm properties as reflected in

FIG. 2. Examples of initial fields resulting from univariate parameter perturbations. (top) Storm intensity per-

turbations, (middle) storm size perturbations, and (bottom) storm rotation perturbations. Refer to Fig. 1 for the

unperturbed field.
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Table 1. In addition, let Q (j) be a real-valued QoI ob-

tained from the UWIN-CM simulation corresponding

to a given random input j. Under the assumption of

finite variance (Le Mâıtre and Knio 2010), Q (j) can be

approximated by the following truncated Fourier-like

expansion:

Q (j)’ ~Q (j)5 �

Np

a50

c
a
C

a
(j) , (4)

where ca 2 R are the expansion coefficients, Ca : j 2
J1R are orthogonal multivariate Legendre poly-

nomials in j, and (Np 1 1) is the total number of poly-

nomials retained in the expansion (i.e., the truncated

basis). To determine the unknown coefficients ca, we

solve an ‘1 regularized regression problem (Peng et al.

2014; Li et al. 2016), using as data the UWIN-CM sim-

ulation ensemble (P 80
LHS) described above. The regu-

larized regression methodology enables us to consider a

truncated basis (or library) whose size is larger than

the number of available realizations. In the applica-

tions below, we use a PC library corresponding to a

polynomial basis truncated at total order eight; with a

four-dimensional random vector, the library contains

495 polynomials including the constant term (i.e.,

Np 1 15 495).

The PC representation [Eq. (4)] readily affords

calculations of various statistical moments, such as

mean and variance that can be estimated, respec-

tively, from

FIG. 3. UWIN-CMmodel realizations (black solid lines) of the time evolution of (left) MWS and (right) MSLP.

Plotted are curves showing the NHC best estimates (yellow), the UWIN-CMensemble envelope (dashed blue), the

UWIN-CM median (solid magenta), and the 10%/90% UWIN-CM ensemble quantiles (dashed magenta).

FIG. 4. UWIN-CM model realizations of storm tracks. The yellow curve represents the best

track estimates by NHC.
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E½ ~Q �5 �

Np

a50

c
a
hC

a
, 1i5 c

0
, (5)

and

V½ ~Q �5E

h

ð ~Q 2E½ ~Q �Þ2
i

5 �

Np

a,b51

c
a
c
b
hC

a
,C

b
i

5 �

Np

a51

c2akCa
k2
L2

(6)

[refer to Le Mâıtre and Knio (2010) for more details].

It also enables us to estimate the variance-based, first-

order and total-order sensitivity indices (Sobol 1993;

Homma and Saltelli 1996) associated with random var-

iable ji, namely using

S
i
5

�
a2S i

c2akCa
k2L2

�

Np

a51

c2akCa
k2
L2

, (7a)

T
i
5

�
a2T i

c2akCa
k2
L2

�

Np

a51

c2akCa
k2L2

, (7b)

where S i (T i) is the set of polynomial indices such that

Ca (a. 0) has degree 0 in all random variables other

than ji (which has degree.0 in ji). Recall that the first-

order sensitivity index associated with ji only accounts

for the variance arising from monomials of ji, whereas

the total order sensitivity index in addition includes

variance contributions arising from cross terms (or in-

teractions) between ji and other random variables.

The calculations of the PC coefficients for time- and

space-dependent QoI require the repeated solution of

the ‘1 regularized regression problem for each space–

time location. This represents a significant computational

burden and the difficulty is compounded when the QoI

exhibits high-frequency oscillations such as those found in

the max wind speed and the MSLP (see Fig. 3). These

difficulties can be overcome by adopting a dimensionality

reduction approach that combines empirical orthogonal

function (EOF) decomposition and the PCmethodology,

as done in Li et al. (2016). The EOF-based PC surrogate

model for a time-dependent QoI can be expressed as

Q (t, j) 5Q (t)1 �
M

m51

ffiffiffiffiffiffi

l
m

q

qm(t)fm(j)

5Q (t)1 �
M

m51

ffiffiffiffiffiffi

l
m

q

qm(t)�

Np

a50

cmaCa
(j) , (8)

where M is the number of modes retained in the EOF

expansion, and Q (t)5 1/Nrlz�
Nrlz

k51Q (t, jk) is the simu-

lation ensemble mean. The term [lm, q
m(t)] denotes the

mth eigenvalue–eigenvector pair in the EOF decom-

position of Q (t, j), and fm(j) is the corresponding

random coefficient. Following Li et al. (2016), fm is

approximated by the PC expansion �
Np

a50c
m
aCa(j).

Letting Ca(t)5�
M

m51

ffiffiffiffiffiffi

lm

p
qm(t)cma , the EOF-PC rep-

resentation of Q (t, j) can be expressed as

Q (t, j)5Q (t)1 �

Np

a50

C
a
(t)C

a
(j) , (9)

which has the same structure as Eq. (4) (except for the

additional term corresponding to the ensemble mean).

As a result, the formulas for the statistical moments and

sensitivity indices can be directly applied to Eq. (9).

Compared with a direct PC approximation of a QoI,

the EOF-PC decomposition involves a significantly re-

duced dimensionality. Specifically, the latter involvesM

time-dependent eigenvectors whereas the former involves

168 hourly outputs. More importantly, by projecting the

response onto the M-dimensional space spanned by the

EOFs, a regularization effect is implicitly achieved, as

manifested by suppression of high-frequency oscillations

and a loss in variability.

b. Uncertainties in EOF decomposition

Before moving on to the PC analysis, we first determine

the impact of the EOF truncation parameterM in Eq. (8)

by examining the cumulative variability associatedwith the

first few leading EOF modes of both MWS and MSLP.

Figure 5 shows these two curves up to mode five.

It is seen that for the MSLP response, because of its rel-

atively smooth timeevolution, its cumulative variance curve

converges rapidly, with more than 95% of variance cap-

tured in the first five modes. On the other hand, the MWS

response, which may be affected by convective bursts,

exhibits a great amount of high-frequency variability so

that the cumulative variance convergence rate is much

slower and the variance curve starts to flatten at mode 5

with around 78% variance explained. Despite the rel-

atively low level of explained variance, our numerical

experiments suggest that retaining five EOF modes for

MWS response is still a reasonable choice (as higher

modes fail to bring noticeable improvement in our EOF

expansion). As a result, we retain five modes for both

the wind and SLP responses.

Traditional EOF analysis ignores underlying un-

certainties in eigendecomposition when dealing with

random sample data. However, the high-frequency

variability in the temporal evolution of MWS (see

Fig. 3) and the limited number of model realizations
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necessitate careful examination of uncertainties in EOF

decompositions of both MWS and MSLP responses. To

this end, the Bayesian Karhunen–Loève (KL) procedure

proposed by Chowdhary andNajm (2016) is utilized. The

Bayesian KL approach essentially generalizes the classi-

cal EOF decomposition framework, namely by accom-

modating uncertainties in the EOF themselves. This is

achieved by applying an extended Bayesian inference

exercise, in which a statistical sampling is applied to si-

multaneously infer uncertain modes and uncertain mode

amplitudes from the ensemble simulation results. The re-

sulting posterior thus enables us to quantify the uncertainty

in the orthogonal modes, and consequently assess the ro-

bustness of the decomposition. Figure 6 shows the first two

eigenmodes of both MWS and MSLP, with their corre-

sponding62s probability bounds. It is seen from the tight

62s intervals that the uncertainty in eigendecomposition

is relatively small, which lends confidence in our EOF

formalism despite the limited ensemble size.

In addition, the Bayesian KL procedure of Chowdhary

and Najm (2016) allows resampling of the underlying

QoIs by design, leading to the ability of examining prob-

ability distribution of QoI responses. Figure 7 compares

probability boundaries from Bayesian KL resampling re-

sults with UWIN-CM ensemble (P 80
LHS) outputs. The

probability boundaries are defined by

FIG. 6. First two eigenmodes of eachQoI (as indicated) in EOF decomposition and the corresponding62s bounds.

FIG. 5. Cumulative energy captured by EOF decomposition up to

mode five.
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where Q BKLs are Bayesian KL samples. When p5 0,

the above bounds correspond to the ‘‘absolute’’ bounds

in Fig. 7, and p5 0:01 leads to the 98% probability

boundaries. Note that the above bounds are defined in a

pointwise manner along the temporal axis, meaning the

resulting probability boundary curves are unlikely to

originate from individual realizations. Nevertheless,

these probability boundaries provide insightful statistics

on temporal responses of MWS and MSLP.

It is observed from Fig. 7 that the absolute boundaries

enclose almost all UWIN-CM realizations, with only

one or two realization curves escaping from the absolute

envelope during 29–30August and 1–3 September. Note

that the absolute boundaries exhibit significant over

and/or under shoot between 30 August and 1 September.

Because these absolute boundaries are of extremely low

probability (lying within the tails of the underlying

probability distributions), a better approach would be to

cut off the low probability tails and examine the 98%

percentile support boundaries, as shown by the green

curves in Fig. 7. As can be seen, these 98% percentile

boundaries fit tightly to theUWIN-CM realizations, and

reduce the ‘‘unrealistic’’ peak/minimum in absolute

boundaries at the expense of allowing a few more re-

alizations to escape from the 98% boundaries. The

probability of UWIN-CM model response (either the

MWS or MSLP) falling between the 98% confidence

intervals from Bayesian KL resampling in Fig. 7 is about

98%. Additional discussion on model prediction statis-

tics follows below.

c. PC surrogate results

As the Bayesian KL analysis above shows that the

EOFmodes of time evolutions of bothMWS andMSLP

are suitably estimated, we move on to the analysis of PC

surrogate models [in the form of Eq. (9)] of the two

QoIs, and compare PC predicted results against UWIN-

CM realizations. Figure 8 shows PC predictions at

0000 UTC 1 September, which are compared with

UWIN-CM realization histograms. The yellow vertical

lines indicate the best estimate of the correspondingQoI

at the given time by NHC. It is clear that our PC pre-

dictions closely resemble the UWIN-CM realizations in

the distribution sense, including the overall distribution

shapes, and peak locations. However, PC-predicted

distributions do miss a few outliers; for example, the

lower bound (about 30m s21) and upper bound (about

80m s21) realization instances in the MWS plot, and

the upper bound (about 980–990 hPa) instances in the

MSLP plot.

In addition, we generate an independent 11-member

UWIN-CM simulation ensemble (denoted as P
11
valid

hereafter) with univariate perturbation along the RMW

parameter axis (while setting other random parameters

to zero), and further validate our PC prediction capa-

bility on this validation set. Figure 9 shows the comparison

of MSLP response curves between UWIN-CM realiza-

tions and PC predictions on P
11
valid. Observe that UWIN-

CM realizations in the two bottom-left panels correspond

to two early intensified storms. Though the PC surrogate

model evidently exhibited discrepancies in reproducing

outliers, it successfully predicted the evolution of the

MSLP inmost cases. In particular, theminimumvalues are

well predicted [within 10 (hPa) error]. The comparison

results for MWS responses are similar, except for the fact

that the curves exhibit more oscillations as one would ex-

pect. These are omitted for brevity.

FIG. 7. Probability boundaries of Bayesian KL resampling of

both (top) MWS and (bottom) MSLP, along with UWIN-CM en-

semble results and the best NHC estimates (yellow curves). Red curves

are absolute bounds of Bayesian KL resampling, and green curves

indicate the 98% confidence interval from Bayesian KL resampling.

The blue dotted lines denote the UWIN-CM realization bounds.
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It is worth noting that the stochastic perturbations

introduced via the parameterization in section 2b are

not the only random source in our UWIN-CM simula-

tions. Compiler configurations, parallelization, and ma-

chine precision error (these are referred to as intrinsic

errors hereafter) also have a ‘‘stochastic’’ effect on

model responses. In other words, the UWIN-CM outputs

are not strictly deterministic and subject to stochastic

behavior stemming from those intrinsic errors. [Combined

with complex sensitivity of the system to changes in initial

conditions, this generally leads us to expected irreduc-

ible residuals in surrogate representations of QoIs (Sraj

et al. 2016).] Additional numerical experiments suggest

that though they cannot be avoided, intrinsic errors

usually lead to relatively small variability in model re-

sponses. This is also partially supported by the relatively

tight SLP band in the bottom-right panel of Fig. 9. For

the time being, we put aside the concern of potential

impact of intrinsic model errors, which lead to the lack

of repeatability of UWIN-CM predictions, and move

forward with the PC statistical analysis.

Figure 10 shows probability envelopes given by PC

surrogates, for both MWS (top panel) andMSLP (bottom

panel). Close agreement betweenPCpredicted probability

boundaries and those from Bayesian KL analysis in Fig. 7

is observed (especially the 98 percentile boundaries). This

suggests that our PC surrogate models are able to re-

produce the variability of theUWIN-CMensemble. This is

further supported by the time evolution of QoI response

variabilities (in terms of standard deviation) as shown in

Fig. 11. Both PC surrogate models and Bayesian KL re-

sampling closely reproduce the standard deviation curves

reported by empirical calculations of UWIN-CM re-

alizations on P
80
LHS. In the MWS plot (the left panel in

Fig. 11), the Bayesian KL resampling variability is close to

the PC variability as EOF truncation for MWS dominates

in the model error of both Bayesian KL and PC analysis.

On the other hand, the EOF truncation error is much

smaller in the analysis of MSLP, leading Bayesian KL re-

sampling to better reproduce the empirical standard de-

viation of UWIN-CM realizations. Here the PC surrogate

model suffers larger error comparedwith the BayesianKL

resampling (see in the right panel of Fig. 11), because of

additional regularization in solving the regression problem

for the PC expansion coefficients (Peng et al. 2014; Li

et al. 2016).

In addition, peak model response variabilities are found

around 31 August for both the MWS andMSLP (Fig. 11),

which coincides with the time of fully intensified storm

state as can be seen from Figs. 7 and 10. As pointed out by

Judt andChen (2016), some of theUWIN-CMrealizations

show rapid intensification of the underlying storm, while

others do not intensify at all. The predictability analysis of

Judt and Chen (2016) is extended in the next section.

d. Rapid intensification prediction

The definition of RI of TCs can be found in Kaplan

and DeMaria (2003), which identifies RI storms by an at

least 15ms21 increase in the MWS within a 24-h period.

We follow the same definition to classify both our

UWIN-CM realizations (on P
80
LHS), as well as sampling

results from both Bayesian KL and PC analyses.

For clarity, we express theRI classification criterion as

follows:

RI5

(

1 if dt, s.t. w
max

(t1 24)2w
max

(t). dW

0 otherwise
,

(11)

wherewmax(t) denotes theMWS at time t (in hours), and

dW is the RI threshold. Table 2 shows the proportion of

FIG. 8. Probability distribution of (top) MWS and (bottom) MSLP

at 0000 UTC 1 Sep. PC prediction curves are obtained via KDE

analysis on PC evaluations over an LHS set of 106 random samples,

while thehistograms are obtained from the 80UWIN-CMrealizations.
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RI storms in different realization sets, under the same

threshold dW 5 15m s21. The classification on UWIN-

CM outputs suggests that it is almost certain for the

storm to undergo a rapid intensification, regardless of the

initial perturbation applied. This RI rate is even higher

than that reported in Judt and Chen (2016). On the other

hand,UWIN-CMoutputs lead to significantly higher ratios

than those from Bayesian KL or EOF-PC reconstructed

MWS responses. This is the result of the combined effect

of mode truncation in both the Bayesian KL and

EOF-PC approaches, as well as the regularization used

in the regression applied to determine the stochastic

mode amplitudes. As discussed by Li et al. (2016),

both truncation (which involves projection on a finite-

dimensional subspace) and regularization (which limits

the order of the basis functions) introduce a considerable

amount of smoothing. In the present case, the smoothing

effect of mode truncation (see energy estimates in Fig. 5)

dominates over that of regularized regression errors

(not shown). Irrespective of their relative magnitudes, a

consequence of these smoothing mechanisms is that the

reconstructed MWS is more likely to be classified as

non-RI under the same threshold. Note that the impact

of the smoothing mechanisms may be systematically

reduced by retaining a larger number of modes in the

expansion, and ensuring that a commensurate size

ensemble is available to support building higher-

dimensional representations (Li et al. 2016). Because

of the expense of generating additional samples, how-

ever, it was not possible to conduct such refinement

study in the present context.

To better understand the stochastic dependence of RI

on random storm perturbations, we examine the prob-

ability distribution of observing a rapidly intensifying

storm in the parameter space J [i.e., p(RI5 1jj)]. This
conditional probability can be expressed by the follow-

ing Bayes’s formula:

p(RI5 1jj) } p(jjRI5 1)3p(RI5 1), (12)

where p(RI5 1) is the prior probability distribution of a

storm undergoing RI. As discussed above, this probability

is highly dependent on theRI threshold dW. Nevertheless,

if the RI threshold is fixed, then p(RI5 1) is simply a

constant, and the above Bayes’s formula reduces to

p(RI5 1jj) } p(jjRI5 1) with fixed RI threshold.

(13)

To calculate the conditional probability distribution

p(jjRI5 1) (i.e., the probability distribution of initial

FIG. 9. Comparing PC predictions of MSLP with out-of-sample UWIN-CMmodel realizations (P 11
LHS). The out-of-sample perturbations

are along the RMW axis, other random variables are unperturbed.
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random parameter j 2 J, provided a storm undergoes

RI), we use the same EOF-PC resampling set (106

samples drawn randomly) as used for obtaining the

probability boundaries in Fig. 10, and filter out all RI

realizations and their corresponding random inputs

(js) with respect to different thresholds (dW 2 f10,
11, . . . , 15gms21). Kernel density estimation (KDE)

analysis is then applied to the filtered random inputs to

generate probability density distributions p(jjRI5 1).

Note the distributions (small-scale details in particular)

obtained fromKDE analysis largely depend on the choice

of kernel size. Because of the lack of ground truth ref-

erence, we only focus on large-scale distribution

patterns that are more stable with respect to kernel size.

Figures 12–14 show marginal distributions in different 2D

parameter spaces (along with 1D marginal probability

distributions of corresponding random variables), with

respect to different thresholds as indicated. For clarity, the

marginal distribution in j1–j4 subspace reads as follows:

p(j
1
, j

4
jRI5 1)

5
1

4

ð

j22[21,1]

ð

j32[21,1]
p(j

1
, j

2
, j

3
, j

4
jRI5 1) dj

2
dj

3
.

(14)

Figure 12 shows marginal distributions of p(jjRI5 1)

in the j1–j4 subspace, which corresponds to average

storm strength (j1) and rotation (j4) perturbations (see

Table 1), respectively. It is seen that despite the different

values of RI thresholds and different color scales, the

overall marginal distributions (spatial patterns of high/

low probability regions) look very similar, suggesting

this distribution analysis is stable with respect to the

threshold. Furthermore, it is evident that the probability

of RI increases with positive perturbations in the

storm strength and rotation. Thus, we conclude that

RI storms are more likely the results of stronger initial

intensification with counterclockwise rotation per-

turbations. In addition, we observe similar variability

of the marginal probability density along both the j1
and j4 axes, suggesting their comparable associated

sensitivities.

FIG. 11. Time evolution of model response uncertainties: (left) MWS and (right) MSLP.

FIG. 10. Probability boundaries given by PC surrogatemodels for

both (top) MWS and (bottom) MSLP, along with UWIN-CM en-

semble results and the best NHC estimates (yellow curves). Red

curves are absolute PC prediction bounds, and green curves in-

dicate the 98% confidence interval from PC sampling. The blue

dotted lines denote the UWIN-CM realization bounds.
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In Fig. 13, similar distributions are once again ob-

served across different thresholds, and RI storms clearly

favor positive perturbations of storm rotation (j4) over

the RMW (j3). In fact, there seem to be little difference

between positive and negative RMW perturbations,

despite a bimodal structure along j3 in the upper half of

the domain (positive storm rotation perturbation re-

gion). Overall, larger variation is observed along j4 axis

compared to that along j3, suggesting higher sensitivity

associated with j4.

Finally, Fig. 14 shows marginal distribution in the

j1–j3 space, which supports our findings above (i.e., the

distributions remain consistent across different thresh-

olds), and initial storm intensification tends to increase

the probability of RI occurrence. In addition, the larger

variability across j1 suggests its higher associated sen-

sitivity and larger impact on RI, compared with storm

size (RMW) perturbations.

To summarize, Figs. 12–14 clearly show that the storm

evolution is primarily influenced by initial storm in-

tensity (mean wind strength component) and rotation

perturbations. These two perturbations seem to exhibit

comparable impact; on the other hand, RMW pertur-

bation seems to only have a secondary impact on storm

intensification. In addition, initially intensified storms

(increasing j1) with counterclockwise rotation pertur-

bations (increasing j4) are more likely to undergo RI.

Note that for brevity, we omit the discussion of RI

probability distributions associated with j2 (asym-

metry part of wind strength) because they have simi-

lar behavior to j1, but smaller impact on the storm

intensification.

The sensitivity-related findings are also supported by

the global sensitivity analysis shown in Fig. 15, which

clearly indicates the dominant impact of azimuthally

averaged maximum wind and asymmetry azimuth per-

turbations, and minor or secondary influence of the

other two parameters. Specifically, the sensitivity is

dominated by the asymmetry azimuth perturbations

during the first day of the simulation (27–28August). On

the second and third day (28–30 August), the sensitivity

to maximum azimuthally averaged wind speed takes

over. These two periods are coincidental with those of

low and high values of environmental wind shear, re-

spectively. The sensitivity of MWS to storm asymmetry

azimuth was high in the weakly sheared environment

(up to 4m s21). However, on 28 August, the environ-

mental shear quickly ramped up to 10m s21 [see Fig. 2a

in Rogers et al. (2015)], which is about two standard

deviations higher than the climatologically expected

shear (Kaplan et al. 2010). This suggests that the envi-

ronmental shear dominates the evolution of the storm

intensity at this time, and is not sensitive to the asym-

metry azimuth of a weak initial storm. The relative

TABLE 2. Proportion of RI realizations in different realization sets, under threshold of dW5 15m s21 over a 24-h period; P 80
LHS denotes

the original 80-member ensemble, whileP 11
valid denotes the additional validation set in Fig. 9. Resampling sets are those sample sets used to

generate the probability boundaries in Figs. 7 and 10.

Sample set UWIN-CM P
80
LHS UWIN-CM P

11
valid Baysian KL resampling

97.5% 100% 54.8%

Sample set PC evaluation on P
80
LHS PC evaluation on P

11
valid PC resampling

58.8% 29.4% 53.3%

FIG. 12. Marginal and conditional probability distributions p(j1, j4jRI5 1) of RI storm in the parameter space j1 2 j4 (associated with

initial storm’s intensity A0 and rotation u, respectively). The threshold is varied from 11 to 15m s21, as indicated.
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sensitivity to different vortex parameters thus is highly

variable in time and possibly strongly depends on the

storm environment. This warrants further investigation

of sensitivity in other TC cases.

4. Semiparametric simulations

In this section, we combine the initial condition per-

turbations discussed earlier with SKEBS forcing used in

Judt and Chen (2016) to examine the relative impact of

the two perturbationmechanisms on storm evolution. In

light of the sensitivity analysis in the previous section, we

perturb only the two dominant parameters (initial av-

erage intensity parameter j1 and asymmetry azimuth

j4), while fixing the other two parameters at zero. A

10-member LHS design in the two-dimensional space

(j1–j4) is used to sample the storm’s mean wind speed

intensity and rotation, and for each realization of the

10 initial storm samples, we run three SKEBS forced

UWIN-CM simulations. As a result, a total of 30

UWIN-CM realizations are generated (Figs. 16 and 17).

Note that the bottom-right panel of Fig. 17 depicts the

individual realizations of the 10-member LHS design,

and that for each of the corresponding initially per-

turbed fields three SKEBS simulations are performed.

Each of the stochastically forced simulations uses a

different value of the random seed.

The response in MWS and MSLP (Fig. 16) closely

matches that of the initial condition realization ensem-

ble (Fig. 3), except for a few nonintensified outliers.

Further comparison between realization ensembles in

this study and those reported in Judt and Chen (2016)

suggests that despite the different mechanisms in the

parametric design of storm perturbation and the SKEBS

random forcing perturbation, they both lead to similar

MWS and MSLP response variability. On the other

FIG. 13. Marginal and conditional probability distributions p(j3, j4jRI5 1) of RI storm in the parameter space j3 2 j4 (associated with

initial storm’s RMW and rotation u, respectively). The threshold is varied from 11 to 15m s21, as indicated.

FIG. 14. Marginal and conditional probability distributions p(j1, j3jRI5 1) of RI storm in the parameter space j1 2 j3 (associated with

initial storm’s intensity A0 and RMW, respectively). The threshold is varied from 11 to 15m s21, as indicated.
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hand, the additional SKEBS random forcing leads to

significantly wider storm-track variability (bottom

panel in Fig. 16), which clearly indicates that the

storm track is more sensitive to the environment

(SKEBS forcing) rather than internal properties of

the storm.

Figure 17 examines more closely the SKEBS-forced

realizations at each individual initial condition realization.

It is seen that for almost all initial condition realizations,

SKEBS forcing leads to dramatic divergence in the storm

path, except for the first sample (the top-left panel inwhich

SKEBS-forced storms move within the perturbed initial

condition ensemble indicated by the red band). Mean-

while, some initial condition perturbations tend to favor

one-sided bias (e.g., eastward bias in panels 2 and 10,

and westward bias in panel 7), while others do not

exhibit a trend (resulting storms can be on either side of

the NHC best-estimated track). Overall, about two-

thirds of the 30 SKEBS-forced semiparametric simula-

tions lead to storm tracks outside the perturbed initial

condition ensemble boundary.

In addition, we have briefly explored the possibility

of isolating the sensitivities associated with reducible

(parametric) and irreducible (SKEBS) perturbations

by applying the variance decomposition methodology

FIG. 15. Global sensitivity analysis of EOF-PC surrogate model of

MWS evolution.

FIG. 16. Semiparametric realizations: (top left) MWS, (top right) MSLP, and (bottom) storm tracks. Also shown

for comparison are theMWSMSLPbounds of theUWIN-CM initial condition ensemble, as well as the storm tracks

of the initial condition ensemble.
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recently introduced in Le Mâıtre and Knio (2015), Le

Mâıtre et al. (2015) and Navarro Jimenez et al. (2016,

2017), which requires independent sampling of the re-

ducible and irreducible perturbations. As outlined in Le

Mâıtre and Knio (2015), Le Mâıtre et al. (2015), and

Navarro Jimenez et al. (2016, 2017), independent sam-

ples of irreducible sources can be generated by acting on

the seeds of the generators used to draw the samples,

and this provides the means to extend variance de-

composition concepts to irreducible uncertainty sources.

Along these lines, we generated a second random sample

that accounts for both parameters and SKEBS forcing.

Specifically, we considered two random seeds for the

SKEBS perturbations, and for each value of the random

seed, a 10-member Latin hypercube sampling of the mean

wind intensity and rotation was considered. In other words,

for each random seed, the two dominant initial storm pa-

rameters were randomly and independently sampled. This

results in an additional 20-member ensemble (not shown for

brevity). Examination of the results of this semiparametric

sampling revealed trends that are similar to those observed

in Fig. 16. Further extension of this strategy to perform a

variance decomposition was unfortunately not possible

because of a combination of several factors: 1) the limited

Monte Carlo sampling of semiparametric UWIN-CM

simulations that we could afford; 2) lack of repeatability

of the UWIN-CM code in its parallel version, which

prevents us from associating variability exclusively

with SKEBS random seeds and/or initial condition pertur-

bations; and 3) extreme sensitivity of storm track to global

SKEBS perturbations, which raises fundamental questions

concerning the significance of contrasting storm QoIs in

the presence of large differences in storm tracks. Conse-

quently, new capabilities are needed to overcome these

hurdles, and these may be best established by considering

smaller systems and tests involving individual components.

The development of such capabilities is beyond the scope

of the current study, and will be pursued elsewhere.

5. Conclusions and discussion

This study primarily aimed at analyzing Hurricane

Earl’s (2010) response to uncertainties in initial storm

properties. Four uncertain parameters, namely, the

FIG. 17. Storm-track comparison: tracks from SKEBS simulations at each of the sample points in the j1–j4 domain (black), tracks

from the initial condition simulation ensemble P 80
LHS (red), and the NHC best track estimate (yellow) and (bottom right) perturbation

sample points.
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azimuthally averaged wind speed, RMW, and asymme-

try magnitude and azimuth, were used to encode in-

ternal uncertainties in the initial storm. The amplitudes

of initial perturbations were based on characteristic

uncertainties of the operational tropical cyclone ob-

serving systems (Landsea and Franklin 2013). The re-

sulting initial perturbations were propagated through

the UWIN-CM framework, which solves for time re-

sponse of the entire atmosphere–wave–ocean coupled

system. The coupled model simulations of Earl captured

the observed intensity evolution during the first 5 days, but

did not capture well its reintensification on 2 September.

However, UWIN-CM produced near excellent pre-

diction of Earl’s track, which is an improvement over the

current state of the art (Judt et al. 2016a; Smith et al.

2017). We focused on the time evolution of MWS,

MSLP, and storm tracks with respect to different initial

condition perturbations.

An 80-member UWIN-CM ensemble of initial con-

dition perturbations was generated via LHS design in

four-dimensional space, and a Bayesian KL analysis

(Chowdhary and Najm 2016) was applied to examine

uncertainties associated with each EOF mode. This EOF

uncertainty analysis leads us to confidently adopt theEOF-

PC approach proposed in Li et al. (2016) for the purpose of

building functional representations of time evolution

of both MWS and MSLP. The agreement between

UWIN-CM ensembles and PC predictions showed that

our EOF-PC surrogate models, despite the finite trun-

cation in EOF/PC expansions and regularization in

solving the regression problem for PC expansion co-

efficients, effectively capture most of the UWIN-CM

response variability, and are statistically consistent with

Bayesian KL resampling results (see Figs. 7 and 10).

Our analysis showed that Earl’s response (MWS and

MSLP) variability increase rapidly over time, roughly

along with the storm intensification until noon 31

August, indicating the complexity of stormRI dynamics.

The RI classification criterion in Kaplan and DeMaria

(2003) was adopted in this study. While this criterion

seems to work well on raw UWIN-CM outputs, it is not

suitable for either Bayesian KL or EOF-PC reconstructed

responses, because of their inherent smoothing mecha-

nism. Furthermore, using a prescribed RI classification

threshold is obviously not a stable or robust measure,

especially in light of the extremely noisy MWSs ob-

served. To guard against the arbitrariness in adjusting

the threshold parameter for RI prediction, we relied on

the conditional probability distribution of initial random

perturbations, given a storm undergoes RI. This condi-

tional probability distribution measure remains stable and

self-consistent across different RI thresholds. More im-

portantly, this distribution measure partitions parameter

space into subdomains with different likelihood of ob-

serving RI; for instance, increasing the initial storm

strength and counterclockwise rotation of the storm

were more likely to result in RI. In addition, this dis-

tribution measure also provides detailed insight on

model sensitivities to different random parameters.

Specifically, we find higher sensitivity to storm asym-

metry azimuth on the first day of the simulation when

the environmental shear was low, and higher sensitivity

to azimuthally averaged maximum wind speed when the

environmental shear increased significantly. This sug-

gests that the uncertainty in initial vortex asymmetry

may have greater impact on TC intensity in weakly

sheared environments. However, further investigation

and analysis to other TC cases is necessary tomakemore

general conclusions.

Finally, we combined our initial condition perturba-

tion scheme with the stochastic SKEBS forcing, and

generated an additional 30-member UWIN-CM reali-

zation ensemble (30 independent SKEBS forcing re-

alizations, 3 for each of the 10 LHS samples in canonical

random variable space j1–j4). While either the initial

condition perturbation or SKEBS forcing leads to con-

siderably large (but comparable) variability inMWSand

MSLP responses, the envelopes of these response vari-

ables were not further increased by combining the two

perturbation mechanisms together. On the other hand,

SKEBS forcing leads towider storm-track span, suggesting

sensitivity to the storm’s environment.

The present work focused on investigating the impacts

of the storm’s initial configuration on its subsequent

evolution, while keeping the initial large-scale environ-

mental flow and oceanic conditions unperturbed. The

PC analysis conducted here is inherently limited to the

coupled model ensemble on which it is based. While

theUWIN-CMprediction of Earl captured the observed

intensity evolution during the first 5 days of the simu-

lation, it did not capture well the reintensification of Earl

on 2 September. Consequently, the PC analysis was

unable to capture the later-stage variability of the storm.

Furthermore, all conclusions are limited to the a priori

assumptions made about the characteristic scale of un-

certainty of the perturbed parameters. A more ambi-

tious investigation program would have addressed both

structural (irreducible) and parametric (reducible) sources

of uncertainty, which have not been tested in this study,

such as uncertainties in physical parameterizations; it

would also have considered perturbing the environ-

mental flow along with the oceanic conditions at the

expense of increasing the size of the uncertain parame-

ter space substantially, and thus the associated sampling

requirements. The latter were already costly given

the computational complexity of the coupled system.
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Another difficulty with assigning uncertainties to the large

scale flows is: how best to perturb a field using the smallest

number of uncertain variables. Thacker et al. (2012) and

Iskandarani et al. (2016a) have successfully used empirical

orthogonal function decomposition to perturb fields;

however, the issue of identifying the relevant dynamical

processes, in the ocean and atmosphere, whose un-

certainties can potentially impact the hurricane forecast

via EOFs, remains a nontrivial question.

In contrast to the initial condition uncertainties in-

vestigated here, the SKEBS stochastic representation

had a large impact on the track and RI. One should note

that the SKEBS perturbations were acting on the envi-

ronmental flows and produced widely varying tracks and

intensity responses. A perturbation of the environmental

flows via EOFs could have resulted in large variability in

hurricane track and intensification. Note, however, that

these EOFs would have represented uncertainties in the

large-scale flows at the initial time whereas SKEBS was

developed to represent the impacts of stochastic un-

certainties in the subgrid scale on the resolvable scales. The

two approaches should not be seen as mutually exclusive

but as complementary in attempting to quantify the im-

pacts of input uncertainty and model uncertainty on the

forecast. Thus, developing techniques to handle both types

of uncertainties remains a necessity.

The present study involved the application of a PC

methodology in a most complex setting and illustrated

the benefits of building a surrogate that can suitably

represent the functional relationship between uncertain

inputs and model outputs. In the context of this study,

the combination of regularized regression and reduced

eigenspace projection techniques provide robust ap-

proach to surrogate construction. As has been observed

in other settings (Li et al. 2016; Sraj et al. 2016), the

capabilities afforded by such approaches include the

means to quantify and control the impact of regulari-

zation and truncation errors that inherently arise be-

cause of limited size ensembles and to QoIs that exhibit

high-frequency oscillations. Once it is available, the

surrogate can be readily exploited to conduct statistical

analysis, determine the dominant contributors to model

uncertainties, and assess the robustness of the sampling.

Furthermore, it can be used to quantify the uncertainties

in forecasting specific events, as was done in the present

work, or in investigating the dynamical implications of

various interacting processes, for example, in studying

the impacts of shear height and depth on hurricane in-

tensification as was done in Finocchio et al. (2016).
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APPENDIX A

Coupled Model Description and Configuration

The coupled modeling system used in this study is the

Unified Wave Interface-Coupled Model (UWIN-CM;

Chen et al. 2013; Chen and Curcic 2016). It is developed

using physically based air–sea coupling through surface

waves and designed as a multimodel system that is com-

patible with the next-generation coupled atmosphere–

wave–ocean–land–sea ice Earth system models. The

coupling interface explicitly resolves wind–wave and

wave–current interactions and exchanges momentum

between components in a conservative and physically

consistent way. The model has been used to study the

role of Stokes drift in surface transport (Curcic et al.

2016), and the impacts of (i) coupling on boundary layer

structure (Zhu et al. 2016) in Hurricane Isaac (2012), as

well as (ii) atmospheric forcing on the transport in Gulf

of Mexico on diurnal and seasonal scales (Judt et al.

2016b). In this study, the fully coupled model compo-

nents consist of atmosphere, surface waves, and ocean

circulation models. The following model description is

largely adapted from Chen and Curcic (2016).

a. Atmosphere model

The atmosphere model used in UWIN-CM is the

Weather Research and Forecasting (WRF) Model v3.7.1

with Advanced Research WRF (ARW) dynamical core

(Skamarock et al. 2008). WRF is a nonhydrostatic

atmospheric model with many model physics options

and a storm-following, moving nest capability for

hurricane forecasting.

The surface layer physics are based on the Monin–

Obukhov theory and boundary layer mixing is parame-

terized using the Yonsei University scheme (YSU; Hong

et al. 2006). The cloud microphysics is the single-moment

6-class microphysics scheme (WSM6; Hong et al. 2004),
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which is used on the inner nested domains without cumulus

parameterization. The Kain–Fritsch cumulus parameteri-

zation is used only on the 12-km parent domain (Kain

and Fritsch 1993) in addition to WSM6. In UWIN-CM,

WRF passes surface wind vectors and air density to the

wave model, and receives surface stress vector from the

wave model, and sea surface temperature (SST) and

currents from the ocean circulationmodel. All fields that

are exchanged between WRF and other coupled com-

ponents are directly interpolated to and from each nest.

b. Ocean surface wave model

The ocean surface wave model in UWIN-CM is the

University of MiamiWaveModel (UMWM) v2 (Donelan

et al. 2012). It is a third-generation spectral ocean wave

model that predicts wave energy spectra and the atmo-

sphere and ocean momentum fluxes based on winds and

ocean currents. In UWIN-CM, UMWM passes air-side

and water-side vector stresses to atmosphere and ocean

circulationmodels, respectively. UMWMalso takes into

account Eulerian ocean currents that act to advect and

refract surface wave energy.

c. Ocean circulation model

The ocean circulation model in UWIN-CM is the Hy-

brid CoordinateOceanModel (HYCOM) v2.2 (Wallcraft

et al. 2009). It is a three-dimensional hydrostatic ocean

model with a hybrid vertical coordinate: z level in shallow

water, terrain-following coordinate in intermediatewater,

and isopycnal (constant density) in deep water. In this

study, we use the nonlocal K-profile vertical mixing

scheme by Large et al. (1994). Full tidal forcing from both

solar and lunar tide components are enabled in our sim-

ulations. In UWIN-CM, HYCOM receives surface stress

based on wave dissipation computed by the wave model,

and turbulent and radiative heat fluxes from the

atmosphere model.

d. Atmosphere–wave–ocean coupling

The UWIN handles the coupling between model

components. It contains the coupling physics and a

common exchange grid that is used for interpolation and

calculation of air–sea exchange fields from the compo-

nent models. WRF passes the wind profile and air den-

sity to the wave model and radiative and heat fluxes and

precipitation rate to the ocean circulation model. UMWM

passes vectorial atmosphere stress to the atmosphere

model and vectorial ocean stress to the ocean circulation

model. HYCOM passes sea surface temperature (SST)

to the atmosphere model and surface current field and

water density to the wave model. All fields are in-

terpolated to the exchange grid and are collocated in

discrete time. In the current model configuration, fields

between all components are exchanged every 60 s. The

interpolation of fields between different model grids,

and parallel execution of the coupler is implemented

using the Earth System Modeling Framework (ESMF;

Hill et al. 2004).

APPENDIX B

Hurricane Earl Perturbation Formulation

The initial wind field of Hurricane Earl is shown in

Fig. 1. For clarity, we decompose the initial azimuthal

wind w as follows:

w(r,b)5A
0
(r)1A

1
(r) cos[b2b

1
(r)]

1Res(r,b)"r 2 [0,R], (B1)

where (r, b) is a cylindrical coordinate system centered

on the storm, and R5 450km denotes the boundary of

the storm. The terms A0(r) and A1(r) are wind ampli-

tudes of wavenumber-0 and -1 components, respec-

tively, at radius r; b1(r) is the wavenumber-1 asymmetry

azimuth (further discussed below); and Res(r, b) de-

notes the residual wind field.

To calculate the radial profiles of A0(r) and

[A1(r), b1(r)] in Eq. (B1), we first discretize the wind

field into Dr 5 10-km-wide annuli along the radial di-

rection, as shown in Fig. B1.Each annulus is indexed by

an integer i (i5 1, 2, . . . , N with increasing radius) and

bounded by the radius of its inner and outer bound-

aries (i.e., ri21 and ri, respectively, with r0 5 0). The

wavenumber-0 component is simply the averaged wind

speed in each annulus, that is,

FIG. B1. Discretization of wind field into 10-km-width

circular annuli.
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A
0
(r)5

1

p(r2i 2 r2i21)

ðri

ri21

ð2p

0

w(r,b)r dr db"r 2 [r
i21

, r
i
).

(B2)

Once A0(r) is calculated, [A1(r), b1(r)] are simply

the results of azimuthal least squares fitting of

w(r, b)2A0(r) onto cos[b2b1(r)] function in each of

the annulus, that is,

A
1
(r),b

1
(r) 5 argmin

A1 ,b1

ðri

ri21

ð2p

0

fw(r,b)2A
0
(r)2A

1
(r) cos[b2b

1
(r)]g2 r dr db"r 2 [r

i21
, r

i
). (B3)

Finally, the residue Res(r, b) is simply

Res(r,b)5w(r,b)2A
0
(r)

2A
1
(r) cos[b2b

1
(r)]"r 2 [0, 450]. (B4)

To design parametric perturbations of the initial wind

field, we focus on three aspects of the storm: the storm

strength [characterized by A0(r) and A1(r)], storm core

size (characterized by RMW), and storm rotation. We

first define RMW as

r
RMW

5 argmax
r#300km

A
0
(r) . (B5)

The intensity and asymmetry amplitude [either A0(r)

or A1(r)] is perturbed (up to 620%) via

AI
0,1(r)5

8

>

>

<

>

>

:

A
0,1
(r)3 (11 0:23 j

1,2
) for r# r

RMW

A
0,1
(r)1 0:23 j

1,2
3A

0,1
(r

RMW
)

R2 r

R2 r
RMW

for r
RMW

, r#R
, (B6)

where the superscript I indicate the first stage of the per-

turbation. Here ji 2 [21, 1] denote uniformly distributed

random parameters (j1, j2 corresponds to A0, A1, re-

spectively). The second part of Eq. (B6) is used to ensure

smooth transition across the stormboundary atR5 450 km.

The second perturbation stage concerns the storm

size (RMW). Because RMW is defined from the A0(r)

profile, perturbing RMW [rRMW* 5 (11 0:23 j3)rRMW]

leads to stretching/shrinking of the AI
0(r) profile as

follows:

AII
0 (r)5

8

>

>

>

<

>

>

>

:

A
0

�

r

11 r
RMW

�

for r# r
RMW
*

A
0

�

R2
R2 r

RMW

R2 r
RMW
*

(R2 r)

	

for r
RMW
* , r#R

. (B7)

Again, the second row in the above equation is to ensure

smooth transition across the storm boundary. The per-

turbed wind speed field thus reads as

wII(r,b)5AII
0 (r)1AI

1(r) cos[b2b
1
(r)]

1Res(r,b)"r 2 [0,R]. (B8)

It is noted that unlike perturbing the storm strength

and size where only the two dominant wave components

A0(r) and A1(r) are perturbed, storm rotation is ap-

plied to the whole wind field. Given a rotating angle

[2p/2#a0 5 (p/2)j4 #p/2], the storm is rotated ac-

cording to the following linearly decaying angle profile

at different locations:

a(r)5
R2 r

R
a
0
5

R2 r

R

p

2
j
4
. (B9)

The above linear decay profile of the rotation angle is

designed to ensure smooth wind field transition across

the storm boundary. To rotate the entire wind field, the

following rotation operations are required:

1) Rotate the wind speed (scalar) field:

This is done by a linear transformation of the spatial

coordinates. Let (x, y) be the original spatial grid

coordinate and r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 1 y2
p

be the distance be-

tween the storm center, and (x, y), the new grid

coordinate after rotating an angle of a(r) is given by
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�

x*

y*

	

5

�

cos[a(r)] 2sin[a(r)]

sin[a(r)] cos[a(r)]

	�

x

y

	

. (B10)

By mapping the scalar function values at the original

grid to rotated grid, we end up with a rotated scalar

field. Specifically, we have

f̂ (x*, y*)5 f (x, y)

5 f

 "

cos[a(r)] 2sin[a(r)]

sin[a(r)] cos[a(r)]

#21"

x*

y*

#!

,

(B11)

where f (x, y) is a generic scalar function.

2) Rotate the wind velocity vectors:

This is done by first rotating the velocity component

fieldsU and V, respectively, from the previous step,

and then adding the rotation angle a(r) to the

velocity orientation angle, that is,

b(x*, y*)5a(r)1 arctan

 

V̂

Û

!

, (B12)

where b(x*, y*) denotes the new velocity orientation

angle after rotation. Figure B2 illustrates the rota-

tion mechanism discussed above.
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Mâıtre, and I. Hoteit, 2017: Assessing an ensemble Kalman

filter inference of Manning’s n coefficient of an idealized

tidal inlet against a polynomial chaos-based MCMC.Ocean

Dyn., 67, 1067–1094, https://doi.org/10.1007/s10236-017-

1074-z.

Skamarock, W. C., and Coauthors, 2008: A description of the

Advanced Research WRF version 3. NCAR Tech. Note

NCAR/TN-4751STR, 113 pp., https://doi.org/10.5065/

D68S4MVH.

Smith, R. K., J. A. Zhang, and M. T. Montgomery, 2017: The dy-

namics of intensification in a Hurricane Weather Research

and Forecasting simulation of Hurricane Earl (2010). Quart.

J. Roy. Meteor. Soc., 143, 293–308, https://doi.org/10.1002/

qj.2922.

Smith, T. A., and Coauthors, 2013: Ocean–wave coupled

modeling in COAMPS-TC: A study of Hurricane Ivan

(2004). Ocean Modell., 69, 181–194, https://doi.org/10.1016/

j.ocemod.2013.06.003.

Sobol, I., 1993: Sensitivity estimates for nonlinear mathematical

models. Math. Model. Comput. Exp., 1, 407–414.

Sraj, I., and Coauthors, 2013: Bayesian inference of drag parame-

ters using AXBT data from Typhoon Fanapi.Mon. Wea. Rev.,

141, 2347–2367, https://doi.org/10.1175/MWR-D-12-00228.1.

——, M. Iskandarani, W. C. Thacker, A. Srinivasan, and

O. Knio, 2014: Drag parameter estimation using gradients

and Hessian from a polynomial chaos model surrogate.

Mon. Wea. Rev., 142, 933–941, https://doi.org/10.1175/MWR-D-

13-00087.1.

——, S. E. Zedler, O. M. Knio, C. S. Jackson, and I. Hoteit, 2016:

Polynomial chaos–based Bayesian inference of k-profile

parameterization in a general circulationmodel of the tropical

Pacific. Mon. Wea. Rev., 144, 4621–4640, https://doi.org/10.1175/

MWR-D-15-0394.1.

Stevenson, S. N., K. L. Corbosiero, and J. Molinari, 2014: The

convective evolution and rapid intensification of Hurricane

Earl (2010). Mon. Wea. Rev., 142, 4364–4380, https://doi.org/

10.1175/MWR-D-14-00078.1.

Stone, G. W., J. M. Grymes III, J. R. Dingler, and D. A. Pepper,

1997: Overview and significance of hurricanes on the Louisiana

coast, U.S.A. J. Coastal Res., 13 (3), 656–669.

Thacker, W. C., A. Srinivasan, M. Iskandarani, O. M. Knio, and

M. LeHénaff, 2012: Propagating boundary uncertainties using

polynomial expansions. Ocean Modell., 43–44, 52–63, https://

doi.org/10.1016/j.ocemod.2011.11.011.

Uhlhorn, E. W., and D. S. Nolan, 2012: Observational under-

sampling in tropical cyclones and implications for estimated

intensity. Mon. Wea. Rev., 140, 825–840, https://doi.org/10.1175/

MWR-D-11-00073.1.

Wallcraft, A. J., E. J. Metzger, and S. N. Carroll, 2009: Software

design description for the HYbrid Coordinate Ocean Model

(HYCOM), version 2.2. Tech. Rep. NRL/MR/7320—09-9166,

NRL, Stennis Space Center, MS, 157 pp., http://www.dtic.mil/

dtic/tr/fulltext/u2/a494779.pdf.

Walsh, E., and Coauthors, 2002: Hurricane directional wave

spectrum spatial variation at landfall. J. Phys. Oceanogr., 32,

1667–1684, https://doi.org/10.1175/1520-0485(2002)032,1667:

HDWSSV.2.0.CO;2.

244 MONTHLY WEATHER REV IEW VOLUME 147

https://doi.org/10.1006/jcph.2002.7104
https://doi.org/10.1006/jcph.2002.7104
https://doi.org/10.1063/1.4922922
https://doi.org/10.1063/1.4922922
https://doi.org/10.1061/(ASCE)1527-6988(2007)8:3(78
https://doi.org/10.1061/(ASCE)1527-6988(2007)8:3(78
http://dx.doi.org/)
https://doi.org/10.1007/s10596-016-9581-4
https://doi.org/10.1016/j.jmarsys.2012.01.015
https://doi.org/10.1016/j.jmarsys.2012.01.015
https://doi.org/10.1002/qj.2283
https://doi.org/10.1002/qj.2283
https://doi.org/10.1016/j.cpc.2017.02.015
https://doi.org/10.1016/j.cpc.2017.02.015
https://doi.org/10.1063/1.4971797
https://doi.org/10.1063/1.4971797
https://doi.org/10.1137/16M1061989
https://doi.org/10.1002/jame.20031
https://doi.org/10.1002/jame.20031
https://doi.org/10.1016/j.jcp.2014.02.024
https://doi.org/10.1016/j.jcp.2014.02.024
https://doi.org/10.1175/MWR-D-14-00175.1
https://doi.org/10.1175/MWR-D-14-00175.1
https://doi.org/10.5194/acp-7-3411-2007
https://doi.org/10.1175/1520-0469(1959)016<0419:OTOOHS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1959)016<0419:OTOOHS>2.0.CO;2
https://doi.org/10.1117/12.2223431
https://doi.org/10.1117/12.2223431
https://doi.org/10.1175/2010JAS3172.1
https://doi.org/10.1007/s10236-017-1074-z
https://doi.org/10.1007/s10236-017-1074-z
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.1002/qj.2922
https://doi.org/10.1002/qj.2922
https://doi.org/10.1016/j.ocemod.2013.06.003
https://doi.org/10.1016/j.ocemod.2013.06.003
https://doi.org/10.1175/MWR-D-12-00228.1
https://doi.org/10.1175/MWR-D-13-00087.1
https://doi.org/10.1175/MWR-D-13-00087.1
https://doi.org/10.1175/MWR-D-15-0394.1
https://doi.org/10.1175/MWR-D-15-0394.1
https://doi.org/10.1175/MWR-D-14-00078.1
https://doi.org/10.1175/MWR-D-14-00078.1
https://doi.org/10.1016/j.ocemod.2011.11.011
https://doi.org/10.1016/j.ocemod.2011.11.011
https://doi.org/10.1175/MWR-D-11-00073.1
https://doi.org/10.1175/MWR-D-11-00073.1
http://www.dtic.mil/dtic/tr/fulltext/u2/a494779.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a494779.pdf
https://doi.org/10.1175/1520-0485(2002)032<1667:HDWSSV>2.0.CO;2
https://doi.org/10.1175/1520-0485(2002)032<1667:HDWSSV>2.0.CO;2


Winokur, J., P. Conrad, I. Sraj, O. Knio, A. Srinivasan, W. C.

Thacker, Y. Marzouk, and M. Iskandarani, 2013: A priori

testing of sparse adaptive polynomial chaos expansions using

an ocean general circulation model database. Comput. Geo-

sci., 17, 899–911, https://doi.org/10.1007/s10596-013-9361-3.

Xie, L., H. Liu, B. Liu, and S. Bao, 2011: A numerical study of the

effect of hurricane wind asymmetry on storm surge and in-

undation. Ocean Modell., 36, 71–79, https://doi.org/10.1016/

j.ocemod.2010.10.001.

Xiu, D., and G. E. Karniadakis, 2002: TheWiener–Askey polynomial

chaos for stochastic differential equations. SIAM J. Sci. Comput.,

24, 619–644, https://doi.org/10.1137/S1064827501387826.

Zhang, F., and J. A. Sippel, 2009: Effects of moist convection on

hurricane predictability. J. Atmos. Sci., 66, 1944–1961, https://

doi.org/10.1175/2009JAS2824.1.

Zhu, P., Y. Wang, S. S. Chen, M. Curcic, and C. Gao, 2016: Impact

of storm-induced cooling of sea surface temperature on large

turbulent eddies and vertical turbulent transport in the atmo-

spheric boundary layer of Hurricane Isaac. J. Geophys. Res.

Oceans, 121, 861–876, https://doi.org/10.1002/2015JC011320.

Zou, X., Z. Qin, and Y. Zheng, 2015: Improved tropical storm

forecasts with GOES-13/15 imager radiance assimilation and

asymmetric vortex initialization in HWRF. Mon. Wea. Rev.,

143, 2485–2505, https://doi.org/10.1175/MWR-D-14-00223.1.

JANUARY 2019 L I E T AL . 245

https://doi.org/10.1007/s10596-013-9361-3
https://doi.org/10.1016/j.ocemod.2010.10.001
https://doi.org/10.1016/j.ocemod.2010.10.001
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1175/2009JAS2824.1
https://doi.org/10.1175/2009JAS2824.1
https://doi.org/10.1002/2015JC011320
https://doi.org/10.1175/MWR-D-14-00223.1


Copyright of Monthly Weather Review is the property of American Meteorological Society

and its content may not be copied or emailed to multiple sites or posted to a listserv without

the copyright holder's express written permission. However, users may print, download, or

email articles for individual use.


